Complexation of Amino Acids with Cadmium and Their Application for Cadmium-Contaminated Soil Remediation

Author:

Yao Wenbin,Yang Zhihui,Huang LeiORCID,Su Changqing

Abstract

The interaction of amino acids with toxic heavy metals influences their immobilization and bioavailability in soils. However, the complexation ability of amino acids with Cd has not been well studied. The complexes of amino acids and cadmium were investigated by density functional theory (DFT) calculations and Fourier transform infrared spectrometry (FTIR) analyses. The complex structures were found to be [COc, COc] for fatty amino-cadmium and PheCd2+, [COc, COc, COs] for GluCd2+ and ThrCd2+, respectively. The complex energy of these conformers followed the order PheCd2+> AlaCd2+ > LeuCd2+ > GluCd2+ > GlyCd2+ > ThrCd2+. Importantly, all of the complex energy values were less than zero, indicating that these complexes could be easily dissolved in water. The Cd2+ concentration decreased with increasing amino acid concentration in aqueous solution. The complex stability constants (logβ) followed the order PheCd2+> AlaCd2+ > LeuCd2+ > GluCd2+ > GlyCd2+ > ThrCd2+, consistent with the order of the calculated complex energy values. The Cd removal efficiencies by Thr, Glu, Gly, Ala, Leu, and Phe were 38.88%, 37.47%, 35.5%, 34.72%, 34.04%, and 31.99%, respectively. In soil batch tests, the total Cd concentration in soil decreased in the presence of amino acids, while the Cd concentration in water increased from 231.97 μg/L to 652.94~793.51 μg/L. The results of sequential extraction showed that the acid-extractable fraction and the reducible fraction of Cd sharply decreased. Consequently, the significant features of amino acids along with their biocompatibility make them potentially applicable chelators in Cd-contaminated soil remediation processes.

Funder

Project of Science and Technology of Chongzuo City

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3