Improving Graph-Based Movie Recommender System Using Cinematic Experience

Author:

Lee CheonSolORCID,Han DongHeeORCID,Han KeejunORCID,Yi MunORCID

Abstract

With the advent of many movie content platforms, users face a flood of content and consequent difficulties in selecting appropriate movie titles. Although much research has been conducted in developing effective recommender systems to provide personalized recommendations based on customers’ past preferences and behaviors, not much attention has been paid to leveraging users’ sentiments and emotions together. In this study, we built a new graph-based movie recommender system that utilized sentiment and emotion information along with user ratings, and evaluated its performance in comparison to well known conventional models and state-of-the-art graph-based models. The sentiment and emotion information were extracted using fine-tuned BERT. We used a Kaggle dataset created by crawling movies’ meta-data and review data from the Rotten Tomatoes website and Amazon product data. The study results show that the proposed IGMC-based models coupled with emotion and sentiment are superior over the compared models. The findings highlight the significance of using sentiment and emotion information in relation to movie recommendation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. The impact of emotions on the helpfulness of movie reviews

2. Cinematic Experience, Film Space, and the Child’s World

3. Tensor-based tag emotion aware recommendation with probabilistic ranking;Lim;KSII Trans. Internet Inf. Syst. (TIIS),2019

4. Movie Recommendation System Using Sentiment Analysis From Microblogging Data

5. Graph convolutional matrix completion;van den Berg;arXiv,2017

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3