Nonlinear Dynamics Suppression of Bending Deflection in a Composite Laminated Plate Using a Beam Stiffener Due to Critical Buckling Load and Shear Force

Author:

Yousuf Louay S.

Abstract

In this paper, the nonlinear dynamics behavior of the bending deflection of a stiffened composite laminated plate is suppressed using beam stiffeners at different fiber volume fractions and different aspect ratios. The non-periodic motion and chaos in a stiffened composite laminated plate is detected using the largest Lyapunov exponent parameter and power density function of a fast Fourier transform (FFT). The critical buckling load is calculated at different thickness ratios, numbers of stiffeners, lamination angles and stiffener–depth ratios based on different boundary conditions. The nonlinear response of the bending deflection is analyzed analytically, numerically and experimentally. The analytic solution has been derived using Levy and Navier solutions of classical laminate plate theory at different boundary conditions (CLPT). The numerical simulation was conducted using the ANSYS program while the experiment test was carried out using a strain gauge through a strain meter device. Experimentally, a Southwell plot is used to investigate the value of the critical buckling load. The combined loading are the in-plane compression mechanical load and shear force. All the values of the largest Lyapunov exponent are positive, which gives indication to non-periodic motion and chaos. The nonlinear dynamics behavior of the bending deflection is decreased with the increasing of number of stiffeners in which the value of largest Lyapunov exponent has been decreased. The nonlinear dynamics behavior is increased with the increasing of aspect ratios and fiber volume fractions. The system with an aspect ratio (2.5) and fiber volume fraction (υf = 80%) for an un-stiffened plate is more chaotic than the other systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3