Pressure Drop and Particle Settlement of Gas–Solid Two-Phase Flow in a Pipe

Author:

Lin Wenqian,Li Liang,Wang Yelong

Abstract

Particle settlement and pressure drop in a gas–solid two-phase flow in a pipe with a circular cross-section are studied at mixture inlet velocities (V) ranging from 1 m/s to 30 m/s, particle volume concentrations (αs) ranging from 1% to 20%, particle mass flows (ms) ranging from 5 t/h to 25 t/h, and particle diameters (dp) ranging from 50 μm to 1000 μm. The momentum equations are based on a two-fluid model and are solved numerically. Some results are validated through comparison with the experimental results. The results showed that the gas and particle velocity distributions are asymmetrical around the center of the pipe and that the maximum velocity point moves up. The distance between the radial position of the maximum velocity and the center line for the gas is larger than that for the particles. The particle motion lags behind that of the gas flow. The particle settlement phenomenon is more serious, and the particle distribution on the cross-section is more inhomogeneous as the V, αs, and ms decrease and as dp increases. It can be divided into three areas according to the pressure changes along the flow direction, and the distinction between the three areas is more obvious as the αs increases. The pressure drop per unit length increases as the V, αs and ms increases and as dp decreases, Finally, the expressions of the settlement index and pressure drop per unit length as functions of V, αs, ms, and dp are derived based on the numerical data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3