Abstract
The emergence of renewable energy offers opportunities for academia and the industry to conduct scientific research and innovative technological developments on wind turbine climbing robots. These robots were developed to carry out specialized application tasks, such as in-situ inspection and maintenance of wind turbine physical structure. This paper presents a scaled-down prototype design of a climbing robot for wind turbine maintenance and its kinematic modeling. The winding mechanism is the key feature for providing enough adhesion force to support the climbing robot and needs to adapt to the different diameters of the wind turbine tower, as it climbs through a circular truncated cone shape. A climbing model is then considered, using four mecanum wheels for maneuverability of the different movement states up-down, rotation, and spiral as it climbs the wind turbine tower. The design of the wind turbine climbing robot was modeled in SketchUp and the motion states were implemented in MATLAB for the climbing performance capabilities of the driving wheels of the robot. Based on the theoretical results of motion characteristics, the scaled-down prototype design of a climbing robot possesses maneuverability of motion and is able to predict the robot’s performance. The contribution of this paper is intended to provide a basis for the new transformative climbing robot design and effectiveness of the mecanum wheel for robot motion.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献