Contamination Levels and the Ecological and Human Health Risks of Potentially Toxic Elements (PTEs) in Soil of Baoshan Area, Southwest China

Author:

Zhang LiORCID,Yang Zheng,Peng Min,Cheng Xiaomeng

Abstract

The primary goals of this study were to reveal the environmental status of potentially toxic elements (PTEs) and their ecological risks, as well as their associated health risks in the Baoshan area, southwest China, which has been surveyed with the scale of 1:250,000 geochemical mapping. Based on a comparison of the PTE concentrations with the soil environmental quality of China and the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cf), and potential ecological risk indexes (Eri and PERI), as well as the potential non-carcinogenic hazard indices (HI and CHI) and carcinogenic risks indices (TCR and CTCR), the following conclusions were drawn: The PTE concentrations in the surface soil samples that were collected from the investigated area (1.65% sites) exceeded the risk intervention values (RIV) for soil contamination of agricultural land of China. Cadmium (Cd) and mercury (Hg) posed higher ecological risks than other PTEs (arsenic (As), chromium (Cr), lead (Pb), copper (Cu), nickel (Ni), and zinc (Zn)), which was highlighted by their toxic response factor. Arsenic was the main PTE with a non-carcinogenic risk (19.57% sites for children and 0.25% sites for adults) and the only PTE that carries a carcinogenic risk (2.67% sites for Children and 0.76% sites for adults) to humans in the research area. Children are more vulnerable to health risks when compared to adults because of their behavioral and physiological traits. Geological genesis was responsible for the high concentrations, ecological risk, and health risk distribution patterns of the examined PTEs. Even though the present research highlights several important aspects related to PTE pollution in the research area, further investigations are needed, especially in mining areas.

Funder

China Geological Survey

Chinese Academy of Geological Sciences Institute of Geophysical and Geochemical Exploration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3