Abstract
This paper represents a multidisciplinary approach to biomechanics (medicine engineering and mathematics) in the field of collum femoris fractures, i.e., of osteosyntheses with femoral/cancellous screws with full or cannulated cross-sections. It presents our new numerical model of femoral screws together with their stochastic (probabilistic, statistical) assessment. In the first part of this article, the new simple numerical model is presented. The model, based on the theory of planar (2D) beams on an elastic foundation and on 2nd-order theory, is characterized by rapid solution. Bending and compression loadings were used for derivation of a set of three 4th-order differential equations. Two examples (i.e., a stainless-steel cannulated femoral screw and full cross-section made of Ti6Al4V material) are presented, explained, and evaluated. In the screws, the internal shearing forces, internal normal forces, internal bending moments, displacement (deflections), slopes, and mechanical stresses are calculated using deterministic and stochastic approaches. For the stochastic approach and a “fully” probabilistic reliability assessment (which is a current trend in science), the simulation-based reliability assessment method, namely, the application of the direct Monte Carlo Method, using Anthill software, is applied. The probabilities of plastic deformations in femoral screws are calculated. Future developments, which could be associated with different configurations of cancellous screws, nonlinearities, experiments, and applications, are also proposed.
Funder
European Union
The Ministry of Education, Youth and Sports of the Czech Republic
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献