The Influence of Silver Nanoparticle Form on the Toxicity in Freshwater Mussels

Author:

Auclair Joelle,Peyrot Caroline,Wilkinson Kevin J.ORCID,Gagné FrançoisORCID

Abstract

The contribution of the form of silver nanomaterials (nAg) towards toxicity in aquatic organisms is not well understood. The purpose of this study was to examine the toxicity of various structures (sphere, cube and prism) of nAg in Dreissena bugensis mussels. Mussels were exposed to increasing concentrations of polyvinyl-coated nAg of the same size for 96 h at 15 °C. They were then analyzed for biophysical changes in the cytoplasm (viscosity, protein aggregation and lipids), neuro-activity (fractal kinetics of acetylcholinesterase (AChE)), oxidative stress (labile zinc (Zn) and lipid peroxidation) and inflammation (arachidonate cyclooxygenase). Although some decreasing effects in protein aggregation were observed, viscosity was more strongly decreased in mussels exposed to spheric and prismatic nAg. The activity of AChE was significantly decreased in the following form-dependent manner: prismatic > cubic > spheric nAg. The fractal dimension of AChE reactions was reduced by all geometries of nAg, while dissolved Ag had no effects. For nanoparticles with the same coating and relative size, spheric nAg produced more significant changes towards the fractal dimension of AChE, while prismatic nAg increased both protein aggregation and viscosity, whereas cubic nAg decreased protein aggregation in the cytoplasm. It is concluded that the geometries of nanoparticles could influence toxicity in aquatic organisms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3