Seismic Strengthening of R/C Buildings Retrofitted by New Window-Type System Using Non-Buckling Slit Dampers Examined via Pseudo-Dynamic Testing and Nonlinear Dynamic Analysis

Author:

Lee Kang-SeokORCID,Lee Bok-Gi,Jung Ju-SeongORCID

Abstract

In the present study, a window-type seismic control system (WSCS) using non-buckling slit dampers (NBSDs) was proposed and developed to address the disadvantages of conventional seismic control systems so that it can be effectively applied to existing reinforced concrete (RC) buildings. Materials testing was also conducted to examine the material performance and energy dissipation capacity of NBSD. A full-scale two-story test frame modeled from existing RC buildings with non-seismic details was subjected to pseudo-dynamic testing. As a result, the effect of NBSD-WSCS, when applied to existing RC frames, was examined and verified, especially as to its seismic retrofitting performance. In addition, based on material testing and pseudo-dynamic test results, a restoring force characteristics model was proposed to implement the nonlinear dynamic analysis of a test building retrofitted with NBSD-WSCS. Based on the proposed restoring force characteristics, nonlinear dynamic analysis was conducted, and the results were compared with those obtained by the pseudo-dynamic tests. Finally, in an attempt to commercialize this NBSD-based WSCS, nonlinear dynamic analysis was conducted on the entire RC building with non-seismic details retrofitted with NBSD-WSCS. The results showed that the RC frame (building) with no reinforcement applied underwent shear failure at seismic intensity of 200 cm/s2, a typical threshold applied in seismic design in Korea. In contrast, in the frame (building) retrofitted with NBSD-WSCS, only minor earthquake damage was expected, and even when the seismic intensity was set to 300 cm/s2, the maximum intensity that had been observed in Korea, only small or moderate seismic damage was expected. These results confirmed the effectiveness of the seismic retrofitting method using NBSD-WSCS developed in the present study.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Damage to Residential Retaining Walls at the Genkai-Jima Island Induced by the 2005 Fukuoka-Ken Seiho-Oki Earthquake

2. Performance of reinforced concrete buildings in the 2016 Kumamoto Earthquakes and seismic design in Japan;Sarrafzadeh;Bull. N. Z. Soc. Earthq. Eng.,2017

3. Site Inspection and Damage Investigation of Buildings by Earthquakes in Gyoungju and Pohang, Seoul, Korea;J. Korea Concr. Inst.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Performance of Structures Retrofitted with Stud-Type Steel Slit Damper System;Journal of Korean Society of Steel Construction;2023-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3