Modeling Warp in Corrugated Cardboard Based on Homogenization Techniques for In-Process Measurement Applications

Author:

Beck MarkusORCID,Fischerauer GerhardORCID

Abstract

A model for describing warp—characterized as a systematic, large-scale deviation from the intended flat shape—in corrugated board based on Kirchhoff plate theory is proposed. It is based on established homogenization techniques and only a minimum of model assumptions. This yields general results applicable to any kind of corrugated cardboard. Since the model is intended to be used with industrial data, basic material properties which are usually not measured in practice are summarized to a few parameters. Those parameters can easily be fitted to the measurement data, allowing the user to systematically identify ways to reduce warp in a given situation in practice. In particular, the model can be used both as a filter to separate the warp from other surface effects such as washboarding, and to interpolate between discrete sample points scattered across the surface of a corrugated board sheet. Applying the model only requires height measurements of the corrugated board at several known (not necessarily exactly predetermined) locations across the corrugated board and acts as an interpolation or regression method between those points. These data can be acquired during production in a cost-efficient way and do not require any destructive testing of the board. The principle of an algorithm for fitting measured data to the model is presented and illustrated with examples taken from ongoing measurements. Additionally, the case of warp-free board is analyzed in more detail to deduce additional theoretical conditions necessary to reach this state.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3