Crystal Structure, Electrical Conductivity and Hydration of the Novel Oxygen-Deficient Perovskite La2ScZnO5.5, Doped with MgO and CaO

Author:

Belova KseniaORCID,Egorova AnastasiaORCID,Pachina Svetlana,Animitsa IrinaORCID

Abstract

This paper demonstrates the possibility of creating oxygen deficiency in perovskites A+3B+3O3 by introducing two types of cations with different charges into the B-sublattice. For this, it is proposed to introduce a two-charged cation, for example, Zn2+, as an alternative to alkaline earth metals. Previously, this possibility was demonstrated for aluminate LaAlO3 and indate LaInO3. In this article, we have focused on the modification of the scandium-containing perovskite LaScO3. The novel oxygen-deficient perovskite La2ScZnO5.5 and doped phases La1.9Ca0.1ScZnO5.45, La2Sc0.9Ca0.1ZnO5.45, and La2Sc0.9Mg0.1ZnO5.45 were obtained via a solid-state reaction process. Their phase composition and hydration were investigated by XRD and TGA + MS techniques. The conductivities of these materials were measured by the electrochemical impedance technique under atmospheres of various water vapor partial pressures. All phases crystallized in orthorhombic symmetry with the Pnma space group. The phases were capable of reversible water uptake; the proton concentration increased in the order of La2ScZnO5.5 < La2Sc0.9Mg0.1ZnO5.45 < La2Sc0.9Ca0.1ZnO5.45 ≈ La1.9Ca0.1ScZnO5.45 and reached ~90% hydration limit for Ca2+-doped phases. The total conductivities increased with the increase in the free lattice volume in the sequence of σLa2ScZnO5.5 < σLa2Sc0.9Mg0.1ZnO5.45 < σLa1.9Ca0.1ScZnO5.45 < σLa2Sc0.9Ca0.1ZnO5.45, the activation energy decreased in the same sequence. The sample La2Sc0.9Ca0.1ZnO5.45 showed the highest conductivity of about 10−3 S∙cm−1 at 650 °C (dry air pH2O = 3.5·10−5 atm). Water incorporation was accompanied by an increase in conductivity in wet air (pH2O = 2·10−2 atm) due to the appearance of proton conductivity. The sample La2Sc0.9Ca0.1ZnO5.45 showed a conductivity of about 10−5 S∙cm−1 at 350 °C (pH2O = 2·10−2 atm). A comparison of conductivities of obtained phase La2ScZnO5.5 with the conductivities of La2AlZnO5.5 and La2InZnO5.5 was made; the nature of the B-cation did not significantly affect the total conductivity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3