Hough Transform Sensitivity Factor Calculation Model Applied to the Analysis of Acne Vulgaris Skin Lesions

Author:

Moncho Santonja MaríaORCID,Micó-Vicent Bàrbara,Defez Beatriz,Jordán JorgeORCID,Peris-Fajarnes GuillermoORCID

Abstract

The number of infectious spots or pathological structures recorded on dermatological images is a tool to aid in the diagnosis and monitoring of disease progression. Dermatological images for the detection and monitoring of the evolution of acne infections are evaluated globally, comparing whether the increase or decrease in infectious lesions appearing on an image is significant. This evaluation method is only indicative since its accuracy is low. The accuracy problem could be improved by an exact count of the number of structures and spots appearing on the image. The mathematical function circular Hough transform (CHT) function implemented in MATLAB is here applied to develop a procedure for counting these structures. CHT has been used in the recognition of benign and distorted red blood cells, in the detection of pellet sizes in industrial processes and in the automated detection and morphological characterization of breast tumor masses from infrared images, as well as for the detection of brain aneurysms and use in magnetic resonance imaging. The sensitivity factor is one of the many parameters required to feed the CHT algorithm. Its choice is unclear as there is no proper methodology to select an optimum value suitable for each image. In this work, a procedure for determining the optimal value of the sensitivity factor is proposed The approach is validated by comparison with the results of the manual counting of the points (ground truth).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3