Impact Damage Detection of a Glass Fabric Composite Using Carbon Fiber Sensors with Regard to Mechanical Loading

Author:

Schmidová NikolaORCID,Macken JoshuaORCID,Horoschenkoff AlexanderORCID,Sedláček RadekORCID,Kostroun TomášORCID,Šimota Jan,Růžička MilanORCID

Abstract

Structural Health Monitoring (SHM) of composite structures leads to greater safety during operation and reduces the cost of regular inspections. Impact damage detection is an important SHM task. Since impact damage can significantly reduce the lifetime of composite structures, sensors for impact damage are of great interest. Carbon Fiber Sensors (CFSs) can be used to detect composite damage. CFSs are lightweight and compact, and they can be integrated during the manufacturing process. In our study, CFSs were manufactured from three types of carbon fiber tows and were integrated into different layers of the lay-up in order to investigate the influence on impact damage detection. The effect of mechanical loading and temperature change on the measured electrical resistance was investigated during cyclic flexural tests. It was revealed that, it is possible to distinguish between changes in measured signals due to impact and due mechanical loading. The change in the measured electrical signal caused by temperature can be eliminated. CFSs can be used for impact damage detection of a glass fabric composite. A combination of thermography and CFSs as an active heating element also provides good results in the field of impact damage detection

Funder

Bayerisch-Tschechische Hochschulagentur

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Test Rig for the Calibration of Strain Sensing Carbon Fibre;2022 3rd International Conference on Communication, Computing and Industry 4.0 (C2I4);2022-12-15

2. The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application;Materials Today Physics;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3