Study on Dominant Frequency Attenuation of Blasting Vibration for Ultra-Small-Spacing Tunnel

Author:

Zhou XianshunORCID,Zhang Xuemin,Feng Han,Zhang Shenglin,Yang Junsheng,Mu Jinwei,Hu Tao

Abstract

The middle rock pillar in ultra-small-spacing tunnels is significantly narrow, and the stability of the primary support and lining are easily influenced by the blasting vibration wave from an adjacent tunnel. Therefore, understanding the vibration frequency characteristics is essential for the blasting vibration control. Based on the blasting works on a double-track roadway tunnel (Jiuwuji tunnel in Guizhou, China), this study investigates the dominant frequency attenuation in the preceding tunnel with the middle rock pillar spacing ranging from 4.0 m to 9.4 m. The results show that the ranges of the dominant frequency distributions on the primary support and lining are widely within 200 Hz, but there are varieties in their propagation laws. The distribution of the dominant frequencies on the primary support is broader than that on the lining; and the dominant frequencies are concentrated on a specific range when the lining is far from the blast face beside a particular value, which is not present on the primary support. As the presence of cavity and changing medium between the lining and the primary support, it made a significant contribution to the filtering the vibration waves. Furthermore, on the primary support, the high-frequency part of the vibration waves attenuates rapidly with distance, and then, the practical prediction equations describing dominant frequency attenuation were proposed. The comparison on frequency characteristics per delay for the millisecond delay blasting shows that multiple delay sequences blast contributes to a multi-structured amplitude spectrum of blast vibration waves; and the varies of the equivalent explosion sources dimensions and numbers of free surfaces in each blast delay resulting in diverse vibration waveforms. Finally, the dominant frequencies determined by different methods were compared, and the results show a nonlinear relationship between the ZCFs and DFs. The above research conclusion expands the understanding of blasting vibration in tunnel engineering, particularly in the frequency distribution.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3