An Advanced Optimization Approach for Long-Short Pairs Trading Strategy Based on Correlation Coefficients and Bollinger Bands

Author:

Chen Chun-Hao,Lai Wei-Hsun,Hung Shih-Ting,Hong Tzung-PeiORCID

Abstract

In the financial market, commodity prices change over time, yielding profit opportunities. Various trading strategies have been proposed to yield good earnings. Pairs trading is one such critical, widely-used strategy with good effect. Given two highly correlated paired target stocks, the strategy suggests buying one when its price falls behind, selling it when its stock price converges, and operating the other stock inversely. In the existing approach, the genetic Bollinger Bands and correlation-coefficient-based pairs trading strategy (GBCPT) utilizes optimization technology to determine the parameters for correlation-based candidate pairs and discover Bollinger Bands-based trading signals. The correlation coefficients are used to calculate the relationship between two stocks through their historical stock prices, and the Bollinger Bands are indicators composed of the moving averages and standard deviations of the stocks. In this paper, to achieve more robust and reliable trading performance, AGBCPT, an advanced GBCPT algorithm, is proposed to take into account volatility and more critical parameters that influence profitability. It encodes six critical parameters into a chromosome. To evaluate the fitness of a chromosome, the encoded parameters are utilized to observe the trading pairs and their trading signals generated from Bollinger Bands. The fitness value is then calculated by the average return and volatility of the long and short trading pairs. The genetic process is repeated to find suitable parameters until the termination condition is met. Experiments on 44 stocks selected from the Taiwan 50 Index are conducted, showing the merits and effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3