From Requirements to Source Code: Evolution of Behavioral Programs

Author:

Poliansky Roy,Sipper MosheORCID,Elyasaf AchiyaORCID

Abstract

Automatically generating executable code has a long history of arguably modest success, mostly limited to the generation of small programs of up to 200 lines of code, and genetic improvement of existing code. We present the use of genetic programming (GP) in conjunction with context-oriented behavioral programming (COBP), the latter being a programming paradigm with unique characteristics that facilitate automatic coding. COBP models a program as a set of behavioral threads (b-threads), each aligned to a single behavior or requirement of the system. To evolve behavioral programs we design viable and effective genetic operators, a genetic representation, and evaluation methods. The simplicity of the COBP paradigm, its straightforward syntax, the ability to use verification and formal-method techniques to validate program correctness, and a program comprising small independent chunks all allow us to effectively generate behavioral programs using GP. To demonstrate our approach we evolve complete programs from scratch of a highly competent O player for the game of tic-tac-toe. The evolved programs are well structured, consisting of multiple, explainable modules that specify the different behavioral aspects of the program and are similar to our handcrafted program. To validate the correctness of our individuals, we utilize the mathematical characteristics of COBP to analyze program behavior under all possible execution paths. Our analysis of an evolved program proved that it plays as expected more than 99% of the times.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Context-Oriented Behavioral Programming;Inf. Softw. Technol.,2021

2. Cramer, N.L. (1985, January 24–26). A representation for the adaptive generation of simple sequential programs. Proceedings of the International Conference on Genetic Algorithms and the Applications, Pittsburgh, PA, USA.

3. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press.

4. Orlov, M., and Sipper, M. (2009, January 8–12). Genetic programming in the wild: Evolving unrestricted bytecode. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Montreal, QC, Canada.

5. Flight of the FINCH through the Java wilderness;IEEE Trans. Evol. Comput.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3