Abstract
Automatic speech recognition (ASR) is an effective technique that can convert human speech into text format or computer actions. ASR systems are widely used in smart appliances, smart homes, and biometric systems. Signal processing and machine learning techniques are incorporated to recognize speech. However, traditional systems have low performance due to a noisy environment. In addition to this, accents and local differences negatively affect the ASR system’s performance while analyzing speech signals. A precise speech recognition system was developed to improve the system performance to overcome these issues. This paper uses speech information from jim-schwoebel voice datasets processed by Mel-frequency cepstral coefficients (MFCCs). The MFCC algorithm extracts the valuable features that are used to recognize speech. Here, a sparse auto-encoder (SAE) neural network is used to classify the model, and the hidden Markov model (HMM) is used to decide on the speech recognition. The network performance is optimized by applying the Harris Hawks optimization (HHO) algorithm to fine-tune the network parameter. The fine-tuned network can effectively recognize speech in a noisy environment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献