Abstract
Nowadays, fault diagnostics is widely applied under Industry 4.0 to reduce machine maintenance costs, improve productivity, and increase machine availability. However, fault diagnostics are mostly post-mortem. When the fault is identified, it is already too late because damages have been done to the product and machine. This paper compares the efficacy of several signal data processing techniques for detecting faults that are about to occur. Our aim is to find an efficient way to predict the fault before it occurs. A continuous wavelet transform synchrosqueezed scalogram was found to be most suitable for this purpose, but it is difficult to apply. A novel procedure is proposed to count the number of pulses in the synchrosqueezed scalogram. A new method for detecting the trend from the pulse counts is then developed to predict the fault before it happens. The procedure and method are illustrated with experimental data collected while running an automated double-thread trampoline webbing machine.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献