Abstract
Electro-optical frequency mapping (EOFM) technology can detect node signals from the backside of integrated circuits (ICs). In the past, the detected signal only qualitatively represented the electrical activity strength inside the device. In this paper, the electro-optical signal generation mechanism of the device is systematically studied, and a concise physical model of laser beam modulation based on the optical transmission matrix is proposed. Firstly, the influence of the bandwidth of the laser and each structure covered by the laser spot on the electro-optical signal of the device is well described by the model. Secondly, the model quantifies the electro-optical signal strength, and shows it is positively correlated with the laser wavelength and the reverse bias voltage. Finally, the model is used to quantitatively calculate the accurate voltage level of the internal node inside the device using the detected signal, and the calculation results match well with the experimental results. The model provides theoretical guidance for the efficient and accurate extraction of internal voltage values of devices by EOFM technology.
Funder
Foundation for Study Encouragement to Youth Innovation Promotion Association Member of Chinese Academy of Sciences
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献