In-the-Loop Simulation Experiment of Aero-Engine Fault-Tolerant Control Technology

Author:

Zhang Mengtian,Huang Xianghua,Wang Shengchao,Luo Liantan

Abstract

Aeroengines are prone to failure due to their large range of working envelopes and bad working environments. Fault diagnosis and a fault-tolerant control strategy for aeroengines and control systems are important means to improve the reliability of aeroengine. In this article, the turbofan engine is taken as the research object, and the fault diagnosis and fault-tolerant control of an aeroengine control system are studied. First, based on the principle of component-level modeling and the algorithm of the extended Kalman filter, an adaptive turbofan model is established, and the adaptive effect of the model in the range of the full envelopment is verified by digital simulation. Next, based on the analytical redundancy provided by the adaptive model, sensor fault diagnosis and fault-tolerant control are studied. The low-voltage speed closed-loop control and EPR closed-loop control are designed, and the sensor fault-tolerant control based on analytic redundancy and the switching control rate is studied. The simulation results show that the filter based on the adaptive model can accurately locate and diagnose the sensor faults, and the sensor fault-tolerance based on the analytic redundancy and switching control rate can be effective fault tolerance for the sensor faults. Finally, as a hardware platform, this article selects MC203 VxWorks as an embedded system, the adaptive model for a turbofan engine as the research object, and has carried on the fault diagnosis and fault-tolerant control in the loop simulation experiment research; the experimental results show that the adaptive model can provide accurate analytical redundancy, and the real-time and fault tolerance of sensor fault effect is better.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. A Review of Aeroengine Control System;J. Aerosp. Power,2004

2. Guo, J. (2020). Research on Sensor Fault Diagnosis and Fault Tolerance Technology of UAV, Lanzhou University of Technology.

3. Signal Reconstruction method of Civil Aeroengine sensor and its application;J. Aeronaut. Power,2016

4. Fan, S. (2008). Aeroengine Control, Northwest University of Technology Press.

5. Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes;Control. Eng. Pract.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3