Simulation-Aided Development of a CNN-Based Vision Module for Plant Detection: Effect of Travel Velocity, Inferencing Speed, and Camera Configurations

Author:

Sanchez Paolo RommelORCID,Zhang Hong

Abstract

In recent years, Convolutional Neural Network (CNN) has become an attractive method to recognize and localize plant species in unstructured agricultural environments. However, developed systems suffer from unoptimized combinations of the CNN model, computer hardware, camera configuration, and travel velocity to prevent missed detections. Missed detection occurs if the camera does not capture a plant due to slow inferencing speed or fast travel velocity. Furthermore, modularity was less focused on Machine Vision System (MVS) development. However, having a modular MVS can reduce the effort in development as it will allow scalability and reusability. This study proposes the derived parameter, called overlapping rate (ro), or the ratio of the camera field of view (S) and inferencing speed (fps) to the travel velocity (v⇀) to theoretically predict the plant detection rate (rd) of an MVS and aid in developing a CNN-based vision module. Using performance from existing MVS, the values of ro at different combinations of inferencing speeds (2.4 to 22 fps) and travel velocity (0.1 to 2.5 m/s) at 0.5 m field of view were calculated. The results showed that missed detections occurred when ro was less than 1. Comparing the theoretical detection rate (rd,th) to the simulated detection rate (rd,sim) showed that rd,th had a 20% margin of error in predicting plant detection rate at very low travel distances (<1 m), but there was no margin of error when travel distance was sufficient to complete a detection pattern cycle (≥10 m). The simulation results also showed that increasing S or having multiple vision modules reduced missed detection by increasing the allowable v⇀max. This number of needed vision modules was equal to rounding up the inverse of ro. Finally, a vision module that utilized SSD MobileNetV1 with an average effective inferencing speed of 16 fps was simulated, developed, and tested. Results showed that the rd,th and rd,sim had no margin of error in predicting ractual of the vision module at the tested travel velocities (0.1 to 0.3 m/s). Thus, the results of this study showed that ro can be used to predict rd and optimize the design of a CNN-based vision-equipped robot for plant detections in agricultural field operations with no margin of error at sufficient travel distance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Youth Perception of Agriculture and Potential for Employment in the Context of Rural Development in Bhutan;Pelzom;Dev. Environ. Foresight,2017

2. A Global Analysis of Agricultural Labor Force;Mortan;Manag. Chall. Contemp. Soc.,2016

3. Policy recommendations for enabling transition towards sustainable agriculture in India

4. Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy

5. Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3