Dist-YOLO: Fast Object Detection with Distance Estimation

Author:

Vajgl MarekORCID,Hurtik PetrORCID,Nejezchleba Tomáš

Abstract

We present a scheme of how YOLO can be improved in order to predict the absolute distance of objects using only information from a monocular camera. It is fully integrated into the original architecture by extending the prediction vectors, sharing the backbone’s weights with the bounding box regressor, and updating the original loss function by a part responsible for distance estimation. We designed two ways of handling the distance, class-agnostic and class-aware, proving class-agnostic creates smaller prediction vectors than class-aware and achieves better results. We demonstrate that the subtasks of object detection and distance measurement are in synergy, resulting in the increase of the precision of the original bounding box functionality. We show that using the KITTI dataset, the proposed scheme yields a mean relative error of 11% considering all eight classes and the distance range within [0, 150] m, which makes the solution highly competitive with existing approaches. Finally, we show that the inference speed is identical to the unmodified YOLO, 45 frames per second.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Estimation of Absolute Scale in Monocular SLAM Using Synthetic Data

2. Depth Sensing Beyond LiDAR Range

3. Yolov3: An incremental improvement;Redmon;arXiv,2018

4. Yolov4: Optimal speed and accuracy of object detection;Bochkovskiy;arXiv,2020

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing autonomous driving through intelligent navigation: A comprehensive improvement approach;Journal of King Saud University - Computer and Information Sciences;2024-07

2. Safe object detection in AMRs - a Survey;2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE);2024-06-18

3. Federated Learning for Smoke and Fire Detection Models Optimization;2024 41st National Radio Science Conference (NRSC);2024-04-16

4. Federated Learning For Smoke and Fire Detection Models Optimization;2024 41st National Radio Science Conference (NRSC);2024-04-16

5. Probabilistic 3D motion model for object tracking in aerial applications;IET Image Processing;2024-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3