Flexural Behavior of Self-Prestressed RC Slabs with Fe-Based Shape Memory Alloy Rebar

Author:

Yeon Yeong-MoORCID,Hong Ki-Nam,Ji Sang-WonORCID

Abstract

A lot of studies have been conducted to introduce self-prestress to structures using Fe-based shape memory alloys (Fe-SMAs). Technology to introduce self-prestress using Fe-SMAs can resolve the disadvantages of conventional prestressed concrete. However, most of the research to introduce a self-prestress force to a structure using Fe-SMAs has been focused on using Fe-SMAs for the repair and strengthening of aging structures. Therefore, in this paper, a study was conducted to introduce self-prestress into a new structure. To this end, in this paper, an experimental study was conducted to evaluate the flexural behavior of self-prestressed concrete slabs with Fe-SMA rebar. Nine specimens were built with consideration of the amount and activation of Fe-SMA rebars as experimental variables. The Fe-SMA rebars used in the specimens exhibited recovery stress of about 335 MPa under the conditions of a pre-strain of 0.04 and a heating temperature of 160 °C. Activation of the Fe-SMA rebars by electrical resistance heating applied an eccentric compression force to the specimen to induce a camber of 0.208–0.496 mm. It was confirmed through a 4-point bending test that the initial crack loads of the activated specimens were 40~101% larger than that of the non-activated specimens. However, the ultimate loads of the activated specimens showed a difference within 3% from that of the non-activated specimens, confirming that the effect of activation on improving the ultimate strength was negligible. Finally, it was confirmed that repetitive activation of the Fe-SMA rebar could repeatedly apply compressive force to the slab.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3