Effect of Co-Encapsulated Natural Antioxidants with Modified Starch on the Oxidative Stability of β-Carotene Loaded within Nanoemulsions

Author:

Ali Ahmad,Rehman Abdur,Jafari Seid Mahdi,Ranjha Muhammad Modassar Ali NawazORCID,Shehzad Qayyum,Shahbaz Hafiz MuhammadORCID,Khan Sohail,Usman MuhammadORCID,Kowalczewski Przemysław ŁukaszORCID,Jarzębski MaciejORCID,Xia Wenshui

Abstract

β-Carotene (vitamin A precursor) and α-tocopherol, the utmost energetic form of vitamin E (VE), are known to be fat-soluble vitamins (FSVs) and essential nutrients needed to enhance the growth and metabolic functions of the human body. Their deficiencies are linked to numerous chronic disorders. Loading of FSVs within nanoemulsions could increase their oxidative stability and solubility. In this research, VE and β-Carotene (BC) were successfully co-entrapped within oil-in-water nanoemulsions of carrier oils, including tuna fish oil (TFO) and medium-chain triglycerides (MCTs), stabilized by modified starch and Tween-80. These nanoemulsions and free carrier oils loaded with vitamins were stored for over one month to investigate the impact of storage circumstances on their physiochemical characteristics. Entrapped bioactive compounds inside the nanoemulsions and bare oil systems showed a diverse behavior in terms of oxidation. A more deficiency of FSVs was found at higher temperatures that were more noticeable in the case of BC. VE behaved like an antioxidant to protect BC in MCT-based nanoemulsions, whereas it could not protect BC perfectly inside the TFO-loaded nanoemulsions. However, cinnamaldehyde (CIN) loading significantly enhanced the oxidative stability and FSVs retention in each nanoemulsion. Purity gum ultra (PGU)-based nanoemulsions comprising FSVs and CIN presented a greater BC retention (42.3%) and VE retention (90.1%) over one-month storage at 40 °C than Twee 80. The superior stability of PGU is accredited to the OSA-MS capabilities to produce denser interfacial coatings that can protect the entrapped compounds from the aqueous phase. This study delivers valuable evidence about the simultaneous loading of lipophilic bioactive compounds to enrich functional foods.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3