Hybrid Network–Spatial Clustering for Optimizing 5G Mobile Networks

Author:

Margaris Aristotelis,Filippas Ioannis,Tsagkaris Kostas

Abstract

5G is the new generation of 3GPP-based cellular communications that provides remarkable connectivity capabilities and extreme network performance to mobile network operators and cellular users worldwide. The rollout process of a new capacity layer (cell) on top of the existing previous cellular technologies is a complex process that requires time and manual effort from radio planning-engineering teams and parameter optimization teams. When it comes to optimum configuration of the 5G gNB cell parameters, the maximization of achieved coverage (RSRP) and quality (SINR) of the served mobile terminals are of high importance for achieving the very high data transmission rates expected in 5G. This process strongly relies on network measurements that can be even more insightful when mobile terminal localization information is present. This information can be generated by modern algorithmic techniques that act on the cellular network signaling measurements. Configuration algorithms can then use these measurements combined with location information to optimize various cell deployment parameters such as cell azimuth. Furthermore, data-driven approaches are shown in the literature to outperform traditional, model-based algorithms as they can automate the optimization of parameters while specializing in the characteristics of each individual geographical zone. In the context of the above, in this paper, we tested the automated network reconfiguration schemes based on unsupervised learning and applied statistics for cell azimuth steering. We compared network metric clustering and geospatial clustering to be used as our baseline algorithms that are based on K-means with the proposed scheme—hybrid network and spatial clustering based on hierarchical DBSCAN. Each of these algorithms used data generated by an initial scenario to produce cell re-configuration actions and their performance was then evaluated on a validated simulation platform to capture the impact of each set of gNB reconfiguration actions. Our performance evaluation methodology was based on statistical distribution analysis for RSRP and SINR metrics for the reference scenario as well as for each reconfiguration scheme. It is shown that while both baseline algorithms improved the overall performance of the network, the proposed hybrid network–spatial scheme greatly outperformed them in all statistical criteria that were evaluated, making it a better candidate for the optimization of 5G capacity layers in modern urban environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Past, Present, and Future of the Internet: A Statistical, Technical, and Functional Comparison of Wired/Wireless Fixed/Mobile Internet;Electronics;2024-05-19

2. Location‐Aware Network Management;Positioning and Location‐based Analytics in 5G and Beyond;2023-09-29

3. Clustering-Based Analysis on 5G Networks: A Comparison;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

4. Learning Cellular Coverage from Real Network Configurations using GNNs;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3