A New Design Method of Shield Tunnel Based on the Concept of Minimum Bending Moment

Author:

Huang Dawei,Jiang HaoORCID,Xu Changjie,Tu Wenbo,Li Xue,Wang Wei

Abstract

As the soil-resistance coefficient in a soft soil area is small, overlarge bending moment may cause exceeding transverse deformation for the shield tunnel and cause structural diseases and waterproof failure at the longitudinal segment joints. Hence, a new idea of cross-section design for a minimum bending moment shield tunnel was proposed. This article has first put forward the concept of a zero bending moment shield tunnel. Then, based on rational and feasible hypotheses, a structural mechanical model and an analytical expression of axis for the cross-section of the zero bending moment shield tunnel was obtained, and computational formulas of internal force and key geometry parameters were given. Based on the case of the metro shield tunnel constructed in the Shanghai soft soil area, the zero bending moment shield tunnel was designed, and its characteristics were analyzed. Considering only one cross-section of shield tunnel can be adopted in one metro line, the design method and procedure of the minimum bending moment shield tunnel were put forward. Finally, taking one of the Shanghai metro lines as an example, a cross-section of a minimum bending moment shield tunnel was designed, and its bending moment was compared with the bending moment of a circular section shield tunnel, which had the same horizontal diameter. The comparison revealed that the cross-section of the minimum bending moment can significantly reduce the bending moment of shield tunnel.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical algorithm of longitudinal bending stiffness of shield tunnel considering longitudinal residual jacking force;Tunnelling and Underground Space Technology;2023-07

2. Computer Aided Design of Tunnel Based on Lonberg Algorithm and Intelligent optimization;2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME);2023-06

3. Intelligent energy-saving parking system design based on deep learning;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24

4. Advanced Underground Space Technology;Applied Sciences;2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3