A Hybrid Superhydrophobic/Hydrophilic Surface Based on SiO2 Nanoparticles over a Clay Substrate for Enhanced Dew Yield Potential

Author:

Beneditt-Jimenez Leonardo A.,Ulloa-Castillo Nicolás AntonioORCID,Iturbe-Ek JackelineORCID,Martínez-Romero OscarORCID,Elías-Zúñiga Alex,Sustaita Alan O.ORCID

Abstract

The study of SiO2 nanoparticles (NPs) and their corresponding surface modifications through octadecyltrichlorosilane (OTS) has attracted attention due to their self-cleaning, hydrophobic and superhydrophobic (SHPho) properties, which are desirable for water collection based on the dew condensation effect. Such properties have been addressed by different strategies, of which the development of hybrid superhydrophobic/hydrophilic (SHH) surfaces has shown great promise. In this research, the pairing of OTS-treated and untreated SiO2 NP layers deposited on clay substrates is investigated with the aim of exploring a hybrid SHH surface capable of enhancing dew yield behavior. Infrared analyses were conducted using FTIR to study the interaction between the clay substrate and the OTS-treated and untreated SiO2 NPs. The hybrid SHH surfaces were morphologically characterized, and contact angle (CA) measurements were performed to explore their wettability behavior. The developed hybrid SHH surfaces exhibited hydrophilic (HPhi)/SHPho properties with an improved dew yield performance. The results obtained in this article are of relevance to the development of water-harvesting devices based on hybrid SHH surfaces.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3