A Study on the Teaching Design of a Hybrid Civics Course Based on the Improved Attention Mechanism

Author:

Miao Wenwu

Abstract

As an important vehicle for moral education, the moral indicators of civics and political science textbooks are naturally some of the most important criteria for revising textbooks. However, the textbook text dataset has too much textual information, ambiguous features, unbalanced sample distributions, etc. To address these problems, this paper combines a novel data enhancement method to obtain classification results based on word vectors. Additionally, for the problem of unbalanced sample sizes, this paper proposes a network model based on the attention mechanism, which combines the ideas of SMOTE and EDA, and uses a self-built stop word list and synonym word forest to conduct synonym queries, achieve a few categories of oversampling, and randomly disrupt the sentence order and intra-sentence word order to build a balanced dataset. The experimental results also show that the data augmentation method used in this paper’s model can effectively improve the performance of the model, resulting in a higher boost in the F1-measure of the model. The model incorporating the attention mechanism has better model generalization compared to the one without the attention mechanism, as well as a significant advantage compared to the reference model in other settings. The experimental results show that, compared with the original text classifier, the scheme of this paper effectively improves the evaluation effect and the reliability design for teaching a civics course.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3