Spatial-Temporal Heterogeneity in the Deformation and Damage of Rock Samples: Experimental Study Using Digital Image Correlation Analysis

Author:

Yan FayuanORCID,Qi Chengzhi,Shan Renliang

Abstract

In situ observations and laboratory experiments showed that slow deformation waves widely exist in geomedia under loading conditions. Slow deformation waves’ behavior exhibits some similarities in media ranging from the scale as large as the Earth’s crust to the scale as small as the laboratory test samples. However, the mechanism underlying their generation has not been clarified yet. In this research an experimental study was performed on small-scale red sandstone samples subjected to uniaxial compression at the displacement rates of 0.1, 0.5, and 1 mm/min. Slow deformation waves under different loading rates were analyzed by speckle photography for microscopic characterization combined with the digital image correlation (DIC) technique. The Luders deformation bands were predominantly observed in the flow channels formed at the stage of macro-elastic deformation. The spatial-temporal heterogeneity of the rock sample surface was quantified, and the deformation waves’ propagation velocities under different loading rates were obtained. The linear relationship between the propagation velocities of slow deformation waves and the loading rates was determined. The research findings shed some new light on the evolutionary characteristics of the slow deformation waves.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Relationship between shallow and deep seismicity in the western Pacific region

2. A Theory of Creep Waves propagating along a transform fault

3. Convection and stress propagation in the upper mantle;Elsasser,1969

4. Earthquake Mechanics;Kasahara,1981

5. Brittle ductile transition and plastic flow network of rocks;Wang;Prog. Geophys.,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3