Experimental Study on Properties of Ultrasonic Coupling Agent with Graphene in NDT

Author:

Mao Hanling,Lan Shun,Mao Hanying,Ren Jiaming,Yi Xiaoxu,Huang Zhenfeng,Li Xinxin

Abstract

An ultrasonic coupling agent, as an acoustic medium between the ultrasonic probe and the surface of the specimens, is indispensable in Nondestructive Testing (NDT). Whether it is liquid, air, or solid coupling agent, the problem of improving the efficiency of ultrasonic propagation in a coupling agent is one worth studying. Glycerol and hydrogels are two common liquid coupling agents in NDT. This study intended to investigate the effect of graphene addition on the performance of these coupling agents in NDT. Firstly, based on the theory of acoustic impedance matching, the authors established an index system to evaluate the performance of ultrasonic coupling agent by experiments. Secondly, hydrogel–graphene and glycerol–graphene composite coupling agents were prepared by adding three-dimensional graphene structure powders with mass fraction of 0.25%, 0.5%, 0.75%, and 1% to CG-98 hydrogel coupling agent and HG-99 glycerol coupling agent, respectively. Corresponding experiments were conducted on these composite coupling agents. Peak-to-peak value, attenuation coefficient, and energy value of first echo are calculated at different frequencies. The experimental results showed that graphene can significantly improve the ultrasonic propagation performance of hydrogel and glycerin coupling agents. In addition, when the mass fraction of graphene added was 0.75%, the coupling agent had the best performance. Finally, we measured the acoustic impedance values of the composite couplings with different graphene contents to demonstrate the reliability of the experimental results.

Funder

the Science and Technology Base and Talents Special Project of Guangxi Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3