A Supervised Classification of Children with Fragile X Syndrome and Controls Based on Kinematic and sEMG Parameters

Author:

Piatkowska Weronika JoannaORCID,Spolaor FabiolaORCID,Romanato Marco,Polli RobertaORCID,Huang Alessandra,Murgia AlessandraORCID,Sawacha ZimiORCID

Abstract

Fragile X syndrome (FXS) is caused by pathologic expansions of the CGG repeat polymorphic region of the FMR1 gene. There are two main categories of FMR1 mutations, “premutation” and “full mutation”, that are associated with different clinical phenotypes, and somatic mosaicism can represent a strong FXS phenotype modulator. FXS is the leading cause of inherited intellectual disability and autism, and it is characterized by musculoskeletal manifestations such as flexible flat feet, joint laxity and hypotonia. The former have been associated with altered joint kinematics and muscle activity during gait. The aim of this study was to use gait analysis parameters to classify FXS children from healthy controls and, within FXS children with full mutation, to classify children with mosaicism. Seven supervised machine learning algorithms were applied to a dataset of joint kinematics and surface electromyographic signals collected on twenty FXS children and sixteen controls. Results showed that the k-NN algorithm outperformed in terms of accuracy (100%) in classifying FXS children from controls, while CN2 rule induction obtained the best accuracy (97%) in classifying FXS children with mosaicism. The proposed pipeline might be used for developing assisted decision-making systems aiming at identifying and treating the musculoskeletal alterations associated with FXS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3