Phytoaccumulation of Heavy Metals by Sodom Apple (Calotropis procera (Aiton) W. T. Aiton) along an Urban–Rural Gradient

Author:

Siraj ORCID,Khan Nasrullah,Ali KishwarORCID,Khan Muhammad Ezaz Hasan,Jones David AaronORCID

Abstract

Heavy metals (HMs) are widely recognized for their toxicity and have serious environmental implications as technology advances and public pressure mounts to guarantee the safest and healthiest environment. This study evaluates the phytoremediation potential of HMs i.e., Copper (Cu), Zinc (Zn), Lead (Pb), and Cadmium (Cd) by Calotropis procera (Aiton) W.T. Aiton, also known as Sodom apple, along an urban–rural gradient and its effect on communities’ diversity, forage and medicinal quality in semi-arid region of Khyber Pakhtunkhwa Pakistan. The HM concentration was investigated along with the urban–rural gradients by sampling C. procera and soil samples. Acid-digested samples were tested for metal concentration using an atomic absorption spectrophotometer (AAS). We used principal component analysis and cluster analysis to identify the pattern of metal distribution in plants and soil. To comprehend the species’ diversity of plant communities in polluted sites, the species’ composition of C. procera communities was explored. Our results showed that the concentration of HMs in the soil and plant decreased from Zn to Cd (Zn > Cu > Pb > Cd). Likewise, more than half of the soil metal accumulated in the roots and aerial part of the plant, indicating the bioaccumulation potential of the plant species for these metals. Zn, Cu, Pb, and Cd translocation ratio varied from root > stem > leaf > flower. Root to stem transfer of metal was poor, but strongly mobilized to the leaves when available in the stems. Carthamus lanatus, Sonchus asper, Cynodon dactylon, Xanthium strumarium, and Silybum marianum were the leading species in three groups of 36 plant species. Pearson’s correlation revealed a significant relationship between HM concentrations and diversity indices. Zn and Cu content in the soil influenced plant species richness, Shannon–Wiener index (H′), and evenness index (Eh). Given the environmental toxicity of HMs, Cd concentrations in soil exceeded the permissible level, suggesting residents should be warned about potential health risks. As a result, the species chosen for this study can be employed as a biomonitor and phytoremediator of soil contaminated by these HMs, as it can accumulate HMs to a toxic level.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference94 articles.

1. Les Éléments Traces Métalliques Dans Les Sols: Approches Fonctionnelles et Spatiales;Baize,2002

2. Soil Solid-Phase Controls Lead Activity in Soil Solution

3. Fluctuating resources in plant communities: a general theory of invasibility

4. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India

5. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects;Saxena;Rev. Environ. Contam. Toxicol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3