A Model for Energy Consumption of Main Cutting Force of High Energy Efficiency Milling Cutter under Vibration

Author:

Jiang Bin,Li Haoyang,Fan Lili,Zhao Peiyi

Abstract

Understanding the influence of the main cutting force energy consumption of the milling cutter is the basis for prediction and control of energy and machining efficiency. The existing models of cutting force energy consumption lack variables related to milling vibration and cutter teeth errors. According to the instantaneous bias of the main profile of the milling cutter under vibration, the instantaneous cutting boundary of the cutter teeth was investigated. The energy consumption distribution of the instantaneous main cutting force of the cutter tooth was studied. The model for the energy consumption of the instantaneous main cutting force of the cutter tooth and the milling cutter were both developed. The formation of energy consumption of the dynamic main cutting force of a high energy efficiency milling cutter was researched. A method for identifying the time–frequency characteristics of the energy consumption of the main cutting force under vibration was proposed and verified by experiments.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Energy consumption-oriented numerical control milling process modeling and parameter optimization;Huang;Int. J. Chin. J. Mech. Eng.,2016

2. Dynamic milling force model for a milling cutter under vibration

3. Investigation on specific milling energy and energy efficiency in high-speed milling based on energy flow theory

4. The energy efficiency acquisition method of the machining process of the tool workpiece double-rotational motion machine tool;Zhang;Int. J. Chin. J. Mech. Eng.,2018

5. Modeling machining energy consumption including the effect of toolpath

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3