Abstract
Bioelectrical impedance analysis (BIA) is a practical alternative to dual-energy X-ray absorptiometry (DXA) for determining body composition in children. Currently, there are no population specific equations available for predicting fat-free mass (FFM) in South African populations. We determined agreement between fat-free mass measured by DXA (FFMDXA) and FFM calculated from published multi-frequency bioelectrical impedance prediction equations (FFMBIA); and developed a new equation for predicting FFM for preadolescent black South African children. Cross-sectional data on a convenience sample of 84 children (mean age 8.5 ± 1.4 years; 44 {52%} girls) included body composition assessed using Dual X-ray Absorptiometry (FFMDXA) and impedance values obtained from the Seca mBCA 514 Medical Body Composition analyzer used to calculate FFM using 17 published prediction equations (FFMBIA). Only two equations yielded FFM estimates that were similar to the DXA readings (p > 0.05). According to the Bland–Altman analysis, the mean differences in FFM (kg) were 0.15 (LOA: −2.68; 2.37) and 0.01 (LOA: −2.68; 2.66). Our new prediction equation, F F M = 105.20 + 0.807 × S e x + 0.174 × W e i g h t + 0.01 × R e a c t a n c e + 15.71 × log ( R I ) , yielded an adjusted R2 = 0.9544. No statistical shrinkage was observed during cross-validation. A new equation enables the BIA-based prediction of FFM in the assessment of preadolescent black South African children.
Subject
Food Science,Nutrition and Dietetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献