Maternal Low-Fat Diet Programs the Hepatic Epigenome despite Exposure to an Obesogenic Postnatal Diet

Author:

Moody Laura,Shao Justin,Chen HongORCID,Pan Yuan-XiangORCID

Abstract

Obesity and metabolic disease present a danger to long-term health outcomes. It has been hypothesized that epigenetic marks established during early life might program individuals and have either beneficial or harmful consequences later in life. In the present study, we examined whether maternal diet alters DNA methylation and whether such modifications persist after an obesogenic postnatal dietary challenge. During gestation and lactation, male Sprague-Dawley rats were exposed to either a high-fat diet (HF; n = 10) or low-fat diet (LF; n = 10). After weaning, all animals were fed a HF diet for an additional nine weeks. There were no differences observed in food intake or body weight between groups. Hepatic DNA methylation was quantified using both methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq). Overall, 1419 differentially methylated regions (DMRs) were identified. DMRs tended to be located in CpG shores and were enriched for genes involved in metabolism and cancer. Gene expression was measured for 31 genes in these pathways. Map3k5 and Igf1r were confirmed to be differentially expressed. Finally, we attempted to quantify the functional relevance of intergenic DMRs. Using chromatin contact data, we saw that conserved DMRs were topologically associated with metabolism genes, which were associated with differential expression of Adh5, Enox1, and Pik3c3. We show that although maternal dietary fat is unable to reverse offspring weight gain in response to a postnatal obesogenic diet, early life diet does program the hepatic methylome. Epigenetic alterations occur primarily in metabolic and cancer pathways and are associated with altered gene expression, but it is unclear whether they bear consequence later in life.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3