Transferability of Empirical Models Derived from Satellite Imagery for Live Fuel Moisture Content Estimation and Fire Risk Prediction

Author:

Marino Eva1ORCID,Yáñez Lucía1,Guijarro Mercedes2ORCID,Madrigal Javier2ORCID,Senra Francisco3,Rodríguez Sergio3,Tomé José Luis1ORCID

Affiliation:

1. Agresta S. Coop., Calle Duque de Fernán Núñez 2, 28012 Madrid, Spain

2. Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. de La Coruña km 7,5, 28040 Madrid, Spain

3. Agencia de Medio Ambiente y Agua, Junta de Andalucía, Calle Johan G. Gutenberg 1, 41092 Sevilla, Spain

Abstract

Estimating live fuel moisture content (LFMC) is critical for assessing vegetation flammability and predicting potential fire behaviour, thus providing relevant information for wildfire prevention and management. Previous research has demonstrated that empirical modelling based on spectral data derived from remote sensing is useful for retrieving LFMC. However, these types of models are often very site-specific and generally considered difficult to extrapolate. In the present study, we analysed the performance of empirical models based on Sentinel-2 spectral data for estimating LFMC in fire-prone shrubland dominated by Cistus ladanifer. We used LFMC data collected in the field between June 2021 and September 2022 in 27 plots in the region of Andalusia (southern Spain). The specific objectives of the study included (i) to test previous existing models fitted for the same shrubland species in a different study area in the region of Madrid (central Spain); (ii) to calibrate empirical models with the field data from the region of Andalusia, comparing the model performance with that of existing models; and (iii) to test the capacity of the best empirical models to predict decreases in LFMC to critical threshold values in historical wildfire events. The results showed that the empirical models derived from Sentinel-2 data provided accurate LFMC monitoring, with a mean absolute error (MAE) of 15% in the estimation of LFMC variability throughout the year and with the MAE decreasing to 10% for the critical lower LFMC values (<100%). They also showed that previous models could be easily recalibrated for extrapolation to different geographical areas, yielding similar errors to the specific empirical models fitted in the study area in an independent validation. Finally, the results showed that decreases in LFMC in historical wildfire events were accurately predicted by the empirical models, with LFMC <80% in this fire-prone shrubland species.

Funder

Junta de Andalucía and EU Cross-Border Cooperation Programme INTERREG VA Spain-Portugal

CILIFO project (Iberian Centre for Research and Forest Firefighting

Spanish National Research Institute for Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3