Cost-Effective Preparation of Gold Tailing-Based Aerogels for Efficient Adsorption of Copper Ions from Wastewater

Author:

Wang Yingjie1,Cui Kaibin2,Bai Jiaxuan2,Fang Baizeng3ORCID,Wang Fei2

Affiliation:

1. Hebei Ruisuo Solid Waste Engineering Technology Research Institute Co., Ltd., Chengde 067020, China

2. Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China

3. Department of Energy Storage Science and Technology, University of Science and Technology Beijing, 30 College Road, Beijing 100083, China

Abstract

Water pollution caused by heavy metal ions has attracted worldwide attention. In this work, gold tailings were used as raw materials and the sol–gel method combined with the atmospheric pressure drying method were used to achieve the low-cost preparation of a silica aerogel. (3-Aminopropyl) triethoxysilane (APTES), ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), and chitosan were used to modify the silica aerogel, which was then used as an adsorbent for the adsorption of copper ions in wastewater. The adsorbent type, adsorption time, copper ion concentration, and pH value were investigated as variables to explore the best adsorption conditions. The adsorption mechanism was also elaborated on. The crystal structure, surface morphology, surface functional groups, chemical composition, and specific surface area of the aerogels and the modified aerogels were characterized by various physiochemical characterizations such as XRD, SEM, FT-IR, XRF, and BET. The results showed that the prepared silica aerogel contained 91.1% SiO2, mainly amorphous SiO2, and amino and carboxyl groups. Other functional groups were successfully grafted onto the silica aerogels. The original silica aerogels and modified silica aerogels had a large specific surface area, total pore volume, and pore diameter. When copper ions were adsorbed by the chitosan-modified silica aerogels, the adsorption capacity of the copper ions was the highest (33.51 mg/g) under the conditions of a copper ion concentration of 100 mg/L, a pH value of 7, and an adsorption time of 2 h. The adsorption of Cu2+ was mainly due to the ion exchange and electrostatic gravity.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Introduced Overseas Scholars Program of Hebei province, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3