Author:
Wang Shuang,Xie Xiaolin,Chen Zhi,Ma Ningning,Zhang Xue,Li Kai,Teng Chao,Ke Yonggang,Tian Ye
Abstract
The exploitation of new methods to control material structure has historically been dominating the material science. The bottom-up self-assembly strategy by taking atom/molecule/ensembles in nanoscale as building blocks and crystallization as a driving force bring hope for material fabrication. DNA-grafted nanoparticle has emerged as a “programmable atom equivalent” and was employed for the assembly of hierarchically ordered three-dimensional superlattice with novel properties and studying the unknown assembly mechanism due to its programmability and versatility in the binding capabilities. In this review, we highlight the assembly strategies and rules of DNA-grafted three-dimensional superlattice, dynamic assembly by different driving factors, and discuss their future applications.
Funder
Shenzhen International Cooperation Research Project
Post-doctoral Foundation Project of Shenzhen Ploytechnic
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献