Overexpression of OsERF83, a Vascular Tissue-Specific Transcription Factor Gene, Confers Drought Tolerance in Rice

Author:

Jung Se EunORCID,Bang Seung Woon,Kim Sung Hwan,Seo Jun SungORCID,Yoon Ho-Bin,Kim Youn Shic,Kim Ju-Kon

Abstract

Abiotic stresses severely affect plant growth and productivity. To cope with abiotic stresses, plants have evolved tolerance mechanisms that are tightly regulated by reprogramming transcription factors (TFs). APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors are known to play an important role in various abiotic stresses. However, our understanding of the molecular mechanisms remains incomplete. In this study, we identified the role of OsERF83, a member of the AP2/ERF transcription factor family, in response to drought stress. OsERF83 is a transcription factor localized to the nucleus and induced in response to various abiotic stresses, such as drought and abscisic acid (ABA). Overexpression of OsERF83 in transgenic plants (OsERF83OX) significantly increased drought tolerance, with higher photochemical efficiency in rice. OsERF83OX was also associated with growth retardation, with reduced grain yields under normal growth conditions. OsERF83 is predominantly expressed in the vascular tissue of all organs. Transcriptome analysis revealed that OsERF83 regulates drought response genes, which are related to the transporter (OsNPF8.10, OsNPF8.17, OsLH1), lignin biosynthesis (OsLAC17, OsLAC10, CAD8D), terpenoid synthesis (OsTPS33, OsTPS14, OsTPS3), cytochrome P450 family (Oscyp71Z4, CYP76M10), and abiotic stress-related genes (OsSAP, OsLEA14, PCC13-62). OsERF83 also up-regulates biotic stress-associated genes, including PATHOGENESIS-RELATED PROTEIN (PR), WALL-ASSOCIATED KINASE (WAK), CELLULOSE SYNTHASE-LIKE PROTEIN E1 (CslE1), and LYSM RECEPTOR-LIKE KINASE (RLK) genes. Our results provide new insight into the multiple roles of OsERF83 in the cross-talk between abiotic and biotic stress signaling pathways.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3