A Review of Plant Disease Detection Systems for Farming Applications

Author:

Ngongoma Mbulelo S. P.1ORCID,Kabeya Musasa1ORCID,Moloi Katleho1

Affiliation:

1. Department of Electrical Power Engineering, Faculty of Engineering and Built Environment, Steve Biko Campus, Durban University of Technology, Durban 4000, South Africa

Abstract

The globe and more particularly the economically developed regions of the world are currently in the era of the Fourth Industrial Revolution (4IR). Conversely, the economically developing regions in the world (and more particularly the African continent) have not yet even fully passed through the Third Industrial Revolution (3IR) wave, and Africa’s economy is still heavily dependent on the agricultural field. On the other hand, the state of global food insecurity is worsening on an annual basis thanks to the exponential growth in the global human population, which continuously heightens the food demand in both quantity and quality. This justifies the significance of the focus on digitizing agricultural practices to improve the farm yield to meet the steep food demand and stabilize the economies of the African continent and countries such as India that are dependent on the agricultural sector to some extent. Technological advances in precision agriculture are already improving farm yields, although several opportunities for further improvement still exist. This study evaluated plant disease detection models (in particular, those over the past two decades) while aiming to gauge the status of the research in this area and identify the opportunities for further research. This study realized that little literature has discussed the real-time monitoring of the onset signs of diseases before they spread throughout the whole plant. There was also substantially less focus on real-time mitigation measures such as actuation operations, spraying pesticides, spraying fertilizers, etc., once a disease was identified. Very little research has focused on the combination of monitoring and phenotyping functions into one model capable of multiple tasks. Hence, this study highlighted a few opportunities for further focus.

Funder

APC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3