Continuous Entity Authentication in the Internet of Things Scenario

Author:

De Santis Alfredo1ORCID,Ferrara Anna Lisa2ORCID,Flores Manuela13ORCID,Masucci Barbara1ORCID

Affiliation:

1. Department of Computer Science, University of Salerno, 84084 Fisciano, Italy

2. Department of Biosciences, Division of Computer Science, University of Molise, 86100 Campobasso, Italy

3. Department of Mathematics and Computer Science, University of Palermo, 90133 Palermo, Italy

Abstract

In the context of the Internet of Things (IoT), the proliferation of identity spoofing threats has led to the need for the constant entity verification of devices. Recently, a formal framework has been proposed to study resistance to impersonation attacks for One-Message Unilateral Entity Authentication (OM-UEA) schemes, in which the prover continuously authenticates itself through the use of a sequence of authentication messages. Given the limited computing power of the parties (particularly the prover) and the often limited bandwidth channel, in the IoT scenario it is desirable to design unilateral entity authentication schemes that require the use of a single message per session and light computations. In this paper, we first show that OM-UEA schemes can be implemented through digital signatures and that a weak form of unforgeability is sufficient to achieve security against active adversaries. We then apply the signature scheme proposed by Yang et al. in ASIACCS 2020 to our framework, resulting in an OM-UEA scheme that requires minimal computational effort and low storage requirements for the prover. Inspired by this last construction, we propose an OM-UEA scheme based on the hardness of the discrete logarithm problem, which further improves the computational performance for the prover. Our findings offer feasible options for implementing secure continuous entity authentication in IoT applications.

Funder

EU-NGEU

VITALITY Ecosystem, Spoke 1 MEGHALITIC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3