Numerical Analysis of New Stainless-Steel Corrugated-Plate Reinforcement of Shield-Tunnel Segmental Joints Based on Virtual-Tracking-Element Technology

Author:

Ding Wenqi12ORCID,Ma Chang12,Guo Yingjie12,Li Xiaoran12,Li Shuobiao12

Affiliation:

1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China

Abstract

Shield tunnels inevitably endure various forms of damage as their service times increase. Steel corrugated plates have been used extensively under multiple conditions and have proven effective in strengthening segmental joints, according to full-scale tests. A numerical model is proposed to probe the feasibility of using a new stainless-steel corrugated plate (SSCP) to reinforce shield-tunnel segments. A new method, called virtual-tracking-element technology, is employed to achieve the simulation of a realistic stress state of the segmental joint. Moreover, a segmental-joint-component analysis and a parametric study were conducted based on the numerical model. The results demonstrate that: (1) the virtual-tracking-element technology is a valid and efficient approach to the simulation of the secondary-stress state of segmental joints; (2) SSCP reinforcement is not fully utilized when the grade of segmental concrete is C50, and it has a wide safety margin for potential overload; (3) SSCP reinforcement performs well regardless of the burial depth, and reinforcement in advance is recommended.

Funder

Shanghai 2020 “Science and Technology Innovation Action Plan”

Yunnan 2022 “Science and Technology Innovation and Demonstration”

NSFC

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3