Materials Optimization and Service Performance Evaluation of a Novel Steel Bridge Deck Pavement Structure: A Case Study

Author:

Haibara Yu1,Ge Hanbin1,Sun Jia2ORCID

Affiliation:

1. Department of Civil Engineering, Meijo University, Nagoya 468-8502, Japan

2. School of Transportation, Southeast University, Nanjing 211189, China

Abstract

Although the double-layer pavement structure with a top layer of stone mastic asphalt concrete (SMAC) and a bottom layer of epoxy asphalt concrete (EAC) has been confirmed to have excellent overall performance in the laboratory, there is a lack of comparison and verification in practical projects. Hence, the utilization of the SMAC + EAC structure in this steel bridge deck pavement (SBDP) practical project and the clarification of its service performance are of significant importance for facilitating the promotion and application of this novel structure. This study relied on an SBDP reconstruction project in Ningbo, China. Indoor performance tests were used to determine the appropriate material compositions for SMAC and EAC. Subsequently, both ERS and SMAC + EAC pavement structures were paved in the project, and the service conditions of the different pavements after one year of operation were tested and compared. The results indicated that the epoxy SBS asphalt (ESA) binder prepared by substituting SBS-modified asphalt binder for the base binder, exhibited improved mechanical strength and toughness. The variation of modifier content significantly affected the high-temperature stability, low-temperature crack resistance, and moisture damage resistance of epoxy SBS asphalt concrete (ESAC) and high-viscosity SBS asphalt concrete (HSAC), while the gradation mainly influenced the skid resistance. The optimal contents of modifiers in ESA and HAS binders were finalized at 45 wt% and 11 wt%. After one year of operation on the trial road, the pavement performance of the SMAC + EAC structure had significant advantages over the ERS system, with all lanes having an SBDP quality index (SDPQI) above 90 and an excellent service condition. The successful application of the SMAC + EAC structure validated its applicability and feasibility in SBDP, which provided strong evidence for the further promotion of this structure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3