Password Cracking with Brute Force Algorithm and Dictionary Attack Using Parallel Programming

Author:

Alkhwaja Ibrahim1ORCID,Albugami Mohammed1,Alkhwaja Ali1ORCID,Alghamdi Mohammed1ORCID,Abahussain Hussam1,Alfawaz Faisal1,Almurayh Abdullah2ORCID,Min-Allah Nasro1

Affiliation:

1. Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

2. Deanship of Admissions and Registration, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

Abstract

Studying password-cracking techniques is essential in the information security discipline as it highlights the vulnerability of weak passwords and the need for stronger security measures to protect sensitive information. While both methods aim to uncover passwords, both approach the task in different ways. A brute force algorithm generates all possible combinations of characters in a specified range and length, while the dictionary attack checks against a predefined word list. This study compares the efficiency of these methods using parallel versions of Python, C++, and Hashcat. The results show that the NVIDIA GeForce GTX 1050 Ti with CUDA is significantly faster than the Intel(R) HD Graphics 630 GPU for cracking passwords, with a speedup of 11.5× and 10.4× for passwords with and without special characters, respectively. Special characters increase password-cracking time, making the process more challenging. The results of our implementation indicate that parallel processing greatly improves the speed of password-cracking techniques. The brute force algorithm achieved a speedup of 1.9× with six cores, while the dictionary attack showed a speedup of 4.4× with eight-core static scheduling. Studying password-cracking techniques highlights the need for stronger security measures to protect sensitive information and the vulnerability of weak passwords.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3