A Comparative Study on Bioleaching Properties of Various Sulfide Minerals Using Acidiphilium cryptum

Author:

Cho Kang-Hee1,Kim Hyun-Soo2,Lee Chang-Gu3,Park Seong-Jik4ORCID,Choi Nag-Choul1

Affiliation:

1. Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea

3. Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea

4. Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong 17579, Republic of Korea

Abstract

Bioleaching has been regarded as a green alternative to chemical leaching in metal extraction processes. In this study, the bioleaching properties of indigenous acidophilic bacteria for various sulfide minerals were compared and evaluated in terms of pH reduction and metal leaching. The primary minerals in the samples were sphalerite (ZnS) (SP), galena (PbS) (GN1 and GN2), pyrite (FeS2) (PY), and chalcopyrite (CuFeS2) (CCP), and an indigenous acidophilic bacterium, Acidiphilium cryptum (99.56%), was applied for bioleaching experiments. The metal extraction in bioleaching differed according to the mineral content. The leached metal concentration of Zn was higher than that of Pb for the SP sample with a high ZnS content, whereas the concentration of Pb was higher than that of Zn for the GN1 and GN2 samples with a high PbS content. Meanwhile, the leaching rate of Zn was faster than that of Pb for all samples. Corrosion action was observed on the surface of bacterial residues in SP and GN1 samples. These results show that the bioleaching mechanism based on sulfide minerals proceeds through indirect biological oxidation, chemical oxidation, and direct bacterial oxidation. The results of this study can provide basic research data for process optimization when employing bioleaching to extract valuable metals.

Funder

R&D Project of the Korea Mine Rehabilitation and Mineral Resources Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3