Lightweight Omnidirectional Radiation Protection for a Photon-Counting Imaging System in Space Applications

Author:

Han Zhen-Wei12,Song Ke-Fei1,Liu Shi-Jie1,Guo Quan-Feng1,Ding Guang-Xing1,He Ling-Ping1,Li Cheng-Wei2,Zhang Hong-Ji1,Liu Yang1,Chen Bo1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Concerns about the impact of space radiation on spacecraft and their internal instruments have prompted the need for effective protection. However, excessive protection can increase the costs and difficulty of space launches, making it crucial to achieve better shielding protection of lighter weights. In real space orbits, we observed the interference of charged particles on photon-counting imaging detectors and plan to address this issue by adding a shielding ring to the side wall of the detector input terminal. Additionally, a local protection structure was proposed for electronics, where the outer edge was increased to enable particles to reach the same thickness as the shielding box within the PCB range. This approach resulted in an omnidirectional spatial shielding thickness that was nearly identical at any point on the PCB surface. Furthermore, we used the Monte Carlo method to calculate the energy loss of electrons and protons in materials such as aluminum (Al), tantalum (Ta), and high-density polyethylene (HDPE). Through this analysis, we determined the optimal mass ratio of Al, Ta, and HDPE to achieve the lowest ionization doses at an object’s location in the particle environment of the FY-3 satellite orbit. This protection strategy provides a useful design concept for photoelectric detection instruments with high sensitivity.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3