A Deep-Learning-Based Secure Routing Protocol to Avoid Blackhole Attacks in VANETs

Author:

Amalia Amalia1ORCID,Pramitarini Yushintia1ORCID,Perdana Ridho Hendra Yoga1ORCID,Shim Kyusung2ORCID,An Beongku3ORCID

Affiliation:

1. Department of Software and Communications Engineering in Graduate School, Hongik University, Sejong City 30016, Republic of Korea

2. School of Computer Engineering and Applied Mathematics, Hankyong National University, Anseong City 17579, Republic of Korea

3. Department of Software and Communications Engineering, Hongik University, Sejong City 30016, Republic of Korea

Abstract

Vehicle ad hoc networks (VANETs) are a vital part of intelligent transportation systems (ITS), offering a variety of advantages from reduced traffic to increased road safety. Despite their benefits, VANETs remain vulnerable to various security threats, including severe blackhole attacks. In this paper, we propose a deep-learning-based secure routing (DLSR) protocol using a deep-learning-based clustering (DLC) protocol to establish a secure route against blackhole attacks. The main features and contributions of this paper are as follows. First, the DLSR protocol utilizes deep learning (DL) at each node to choose secure routing or normal routing while establishing secure routes. Additionally, we can identify the behavior of malicious nodes to determine the best possible next hop based on its fitness function value. Second, the DLC protocol is considered an underlying structure to enhance connectivity between nodes and reduce control overhead. Third, we design a deep neural network (DNN) model to optimize the fitness function in both DLSR and DLC protocols. The DLSR protocol considers parameters such as remaining energy, distance, and hop count, while the DLC protocol considers cosine similarity, cosine distance, and the node’s remaining energy. Finally, from the performance results, we evaluate the performance of the proposed routing and clustering protocol in the viewpoints of packet delivery ratio, routing delay, control overhead, packet loss ratio, and number of packet losses. Additionally, we also exploit the impact of the mobility model such as reference point group mobility (RPGM) and random waypoint (RWP) on the network metrics.

Funder

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3