An Effective Method for Detection and Recognition of Uyghur Texts in Images with Backgrounds

Author:

Ibrayim Mayire,Mattohti Ahmatjan,Hamdulla AskarORCID

Abstract

Uyghur text detection and recognition in images with simple backgrounds is still a challenging task for Uyghur image content analysis. In this paper, we propose a new effective Uyghur text detection method based on channel-enhanced MSERs and the CNN classification model. In order to extract more complete text components, a new text candidate region extraction algorithm is put forward, which is based on the channel-enhanced MSERs according to the characteristics of Uyghur text. In order to effectively prune the non-text regions, we design a CNN classification network according to the LeNet-5, which gains the description characteristics automatically and avoids the tedious and low efficiency artificial characteristic extraction work. For Uyghur text recognition in images, we improved the traditional CRNN network, and to verify its effectiveness, the networks trained on a synthetic dataset and evaluated on the text recognition datasets. The experimental results indicated that the Uyghur text detection method in this paper is robust and applicable, and the recognition result by improvedCRNN was better than the original CRNN network.

Funder

Natural Science Foundation of Xinjiang

Publisher

MDPI AG

Subject

Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3