A Novel Supervised Filter Feature Selection Method Based on Gaussian Probability Density for Fault Diagnosis of Permanent Magnet DC Motors

Author:

Wang WeihaoORCID,Lu Lixin,Wei Wang

Abstract

For permanent magnet DC motors (PMDCMs), the amplitude of the current signals gradually decreases after the motor starts. In this work, the time domain features and time-frequency-domain features extracted from several successive segments of current signals make up a feature vector, which is adopted for fault diagnosis of PMDCMs. Many redundant features will lead to a decrease in diagnosis efficiency and increase the computation cost, so it is necessary to eliminate redundant features and features that have negative effects. This paper presents a novel supervised filter feature selection method for reducing data dimension by employing the Gaussian probability density function (GPDF) and named Gaussian vote feature selection (GVFS). To evaluate the effectiveness of the proposed GVFS, we compared it with the other five filter feature selection methods by utilizing the PMDCM’s data. Additionally, Gaussian naive Bayes (GNB), k-nearest neighbor algorithm (k-NN), and support vector machine (SVM) are utilized for the construction of fault diagnosis models. Experimental results show that the proposed GVFS has a better diagnostic effect than the other five feature selection methods, and the average accuracy of fault diagnosis improves from 97.89% to 99.44%. This paper lays the foundation of fault diagnosis for PMDCMs and provides a novel filter feature selection method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3