A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration

Author:

Yang Wen,Wang Jianli,Wang Bin

Abstract

With the successful application of the Shack–Hartmann wavefront sensor in measuring aberrations of the human eye, researchers found that, when the aberration is large, the local wavefront distortion is large, and it causes the spot corresponding to the sub-aperture of the microlens to shift out of the corresponding range of the sub-aperture. However, the traditional wavefront reconstruction algorithm searches for the spot within the corresponding range of the sub-aperture of the microlens and reconstructs the wavefront according to the calculated centroid, which leads to wavefront reconstruction errors. To solve the problem of the small dynamic range of the Shack–Hartmann wavefront sensor, this paper proposes a wavefront reconstruction algorithm based on the autocorrelation method and a neural network. The autocorrelation centroid extraction method was used to calculate the centroid in the entire spot map in order to obtain a centroid map and to reconstruct the wavefront by matching the centroid with the microlens array through the neural network. This method breaks the limitation of the sub-aperture of the microlens. The experimental results show that the algorithm improves the dynamic range of the first 15 terms of the Zernike aberration reconstruction to varying degrees, ranging from 62.86% to 183.87%.

Funder

Jilin Province Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Position and displacement sensing with Shack–Hartmann wave-front sensors

2. Bermerkungen über Den Bau Und Die Justierung Von Spektrographen;Hartmann;Z. Instrum.,1900

3. Production and Use of a Lecticular Hartmann Screen;Shack;J. Opt. Soc. Am.,1971

4. Shack–Hartmann centroid detection method based on high dynamic range imaging and normalization techniques

5. Shack-Hartmann Wavefront Sensor Precision and Accuracy;Neal;Proceedings of the Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3